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ON A GENERALIZATION OF THE RESOLVENT CONDITION 
IN THE KREISS MATRIX THEOREM 

H. W. J. LENFERINK AND M. N. SPIJKER 

ABSTRACT. This paper deals with a condition on the resolvent of s x s matrices 
A . In one of the equivalent assertions of the Kreiss matrix theorem, the spectral 
norm of the resolvent of A at 4 must satisfy an inequality for all 4 lying 
outside the unit disk in C. We consider a generalization in which domains 
different from the unit disk and more general norms are allowed. 

Under this generalized resolvent condition an upper bound is derived for 
the norms of the nth powers of s x s matrices B. Here, B depends on 
A via a relation B = (0(A), where p is an arbitrary rational function. The 
upper bound grows linearly with s > 1 and is independent of n > 1 . This 
generalizes an upper bound occurring in the Kreiss theorem where B = A. 

Like the classical Kreiss theorem, the upper bound derived in this paper can 
be used in the stability analysis of numerical methods for solving differential 
equations. 

1. INTRODUCTION 

In the stability analysis of numerical methods for solving differential equa- 
tions one is often faced with the question whether the norms of the powers of 
a given matrix are uniformly bounded. The Kreiss matrix theorem (see, e.g., 
[3, 6, 9]) provides an important tool for answering this question. One of the 
assertions of the theorem relates the inequality 

(1.1) IIAnI ? for n = 1, 2, 3, ... 

to the resolvent condition, 

(1.2) f (U - A) is regular with 

'1II ( -A)-' <?Md(, V)Y' forallcomplex; V. 
Here, A stands for a complex s x s matrix, I is the s x s identity matrix, 
11 I1 = 11 d 112 is the spectral norm (the matrix norm induced by the Euclidean 
norm on Cs), V is the closed unit disk in the complex plane, and 

d(C, V) = min IC- 4I. ~E V 
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By power series expansion it is easily seen that (1.1) implies (1.2) with Ml = 

Mo. The Kreiss theorem asserts that, conversely, (1.2) implies (1.1) with MO 
depending on M, and s only. Various authors (e.g., [10]) studied the size 
of (the optimal) Mo as a function of Ml, s. Eventually it was proved by 
LeVeque and Trefethen [5] that (1.2) implies (1.1) with 

(1.3) Mo=2esM1, 

and that no essential improvement upon this value is possible. 
In this paper we shall generalize the result (1.3) in various directions. First 

of all, we shall be dealing with more general norms I I * I I than the spectral norm. 
Further, the set V in (1.2) will be allowed to be a convex subset of the complex 
plane different from the unit disk. Finally, we shall derive an upper bound Mo 
for the norms of the powers of ~o (A) instead of A itself. Here fo denotes an 
arbitrary rational function. 

Like the classical Kreiss theorem, our generalization can be applied in the sta- 
bility analysis of finite difference methods for solving partial differential equa- 
tions. In the classical situation, A is usually obtained by Fourier transformation 
and stands essentially for the so-called amplification matrix corresponding to the 
finite difference scheme under consideration. On the other hand, our general- 
ization does not require such a transformation. It can be applied, more directly, 
with ~o (A) standing for the finite difference operator itself. In this fashion rigor- 
ous stability estimates can be derived, e.g., with respect to the maximum norm, 
in the numerical solution of initial-boundary value problems. For examples of 
such applications, see [4]. 

Theorem 2.2 in ?2 contains the main result of this paper. It can be viewed 
as a generalization of (1.3). The proof of this theorem uses some ideas adopted 
from [5]. Further, it relies heavily on an upper bound for the arc length of the 
image R(C) of a plane curve C c C under a rational function R. 

In Lemma 3.1 of ?3 we present the upper bound for R(C) needed in ?2. 
The proof of this lemma is based, among other things, on ideas taken from [9, 
pp. 397-402] and on B&zout's theorem (see, e.g., [11]). Further, ?3 contains the 
technical Lemmas 3.2 and 3.3, which are also needed in the proof of Theorem 
2.2. 

2. A GENERALIZATION OF THE RESULT (1.3) 

In the following, s is an arbitrary positive integer, and 1 denotes an 
arbitrary norm on the vectorspace Cs s of all complex s x s matrices. We shall 
repeatedly use the following assumption on a plane curve C in C. 

Assumption 2.1. There exist a positive integer v and real coefficients a1 k (for 
1 > ?0 k > O. j+k < v) with aijk : ? for some j, k satisfying j+k = v, 
such that C is a subset of 

{ : = 4 + iq with q, Q E IR and K(c , a) = 0}. 
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Here, 

K(c4, C) E a jkX 7 
O< j+k<v 

This assumption will allow us to use Bezout's theorem, already mentioned in 
the introduction, in the proof of Lemma 3.1. 

We now formulate our generalization of the assertion in ? 1 that (1.2) implies 
(1.1), (1.3). 

Theorem 2.2. Assume 

(2.1.a) ep is a rational function which is not constant on C, and S is 
the set defined by 

S={4 :ECand (0 is regular at S with I (p(;)I}, 

(2.1.b) V is a compact, convex subset of S, 

(2. 1.c) the boundary C = & V of V satisfies Assumption 2.1, 

(2. 1. d) ' (4) :A 0 for all;C E (a V n 9s), 

(2.1.e) A is a complex s x s matrix satisfying (1.2) for a given Ml > 0. 

Then 

(2.2) I(o(AI)nII < yMs (n = 1, 2, 3, ...), 

where y depends only on (0 and V (and not on A, s, n, Ml, or II II) 
Proof. 1. Assume (2.1) and let n be a given positive integer. 

By a version of the Hahn-Banach theorem (see, e.g., [8]), there exists a linear 
functional F: CS S -5, C with 

(2.3.a) 1 = hIF1l := sup{IF(B)l:B E Cs's with hiBIJ < 11 

and 

(2.3.b) F((o(A)n ) = l (A)" 1. 

In the following we assume F is such a functional and consider the quantity 
F(9o(A)n). 

In order to express F(9 (A)n) in terms of a Cauchy integral, we will define a 
suitable family of paths. 

Let C I2 I ... ' Ca be those points on a V for which ('(C) = 0. 
2. First consider the case where there exists some Co E int(V). Let, for 

a>O and j= 1, 2, ...,a, 

VJ = {I: 4 E C and ICO + t(Cj - 4C) - 41 < a for some t E [0, 1]} 

and 
VO=VUV UV U ... UVa 



214 H. W. J. LENFERINK AND M. N. SPIJKER 

By assumptions (2. L.b,d) we can choose a such that the corresponding set VO 
is contained in S and (o'(C) :$ 0 for all ; E a (VO) 

The assumptions of Lemma 3.2 are satisfied with C = & (VO) and Co as 
above. Hence, & (VO) is equal to the range of a positively oriented Jordan 
curve FO, parametrized by C = zo(t), 0 < t < 1. Here, zo satisfies (3.1) 
with some m = mO > 1, '1 = ,0 > 0 2 = 2, 0 > 0, and rz satisfying 
Ok= < i <-<Zmr 1. 

We define our family of paths Fr by 

z8(t) = 1+ 8)(zo(t) - Co) + Co for e > 0 and t E [O. 1]. 

Set, for e > 0, 

W = (1 + e)(V - C0) + o0 and V. = (1 + 8)(VO - Co) + Co 

Using the convexity of V and the fact that Co E int(V), we can see that 

(2.4.a) V c int(J') c int(J") for all e > 0. 

Further, using the fact that the interior of the Jordan curve FO is equal to 
int(VO), we conclude that 

(2.4.b) the interior of the Jordan curve Fr equals int(V/) for all e > 0. 

Hence, for e sufficiently small, the curve Fr and its interior contain no poles 
of Ao, whereas the spectrum of A is contained in V by (2. L.e). We may thus 
integrate along Fr to obtain by the Cauchy formula (see, e.g., [1, p. 568]) 

F(p(A) ) = 2,ri | () F((CI - A)1) dc 

Choosing e sufficiently small, say 0 < e < fi, we have additionally 

') 0 for all;C on IFep 

By partial integration and (2.3) we thus obtain, for 0 < e < , 

(2.5.a) 11o(A) 1 -[2ri(n + 1)] J o(')n+ R'(4)d'. 

Here, 

(2.5.b) R(C) = F((UI A)-1)[ (4W]1 

Since F is linear, we see that F ((UI -A) 1) is a rational function with numer- 
ator and denominator having degree not exceeding s. Consequently, R(C) is a 
rational function with numerator and denominator of degree at most (s + M), 
where M depends only on fo. 

We define 

r = max{KI- Sol:; lies on Fo}, 
L = max{ I'()1: C lies on F, for some A E [0, fl]}. 



RESOLVENT CONDITION IN THE KREISS MATRIX THEOREM 215 

In view of (2.1.a,b) we obtain from (2.5) the upper bound 

(2.6) I H(A)nII < [2r(n + 1)]1(1 + erL)n+l IR'(4)l Id4I. 

3. We will bound the above integral by using Lemma 3.1. Assumption 2.1 
is fulfilled by C = zO[O, 1], with some integer, say v = vo > 1, because of 
(2.1.c) and by the construction of zo . Since z (t) = (1 + e)zo(t) + e4C, we see 
that Assumption 2.1 also holds with C = z[O, 1] and with the same integer 
v = vO . Thus, the conditions of Lemma 3.1 are satisfied with z = z., m = mO, 
81 = (1 +8)91,0' 2 = 8)92,0' V = vow = , and R(C) as defined in 
(2.5.b). Lemma 3.1 and (2.6) thus lead to 

(2.7.a) ko(A)nII = [2r(n + 1)]-(1 +?erL)n+0p, 
where 

(2.7.b) 70 = 22,09,0 + 14(m- vO) + 16vo(s + M), 

(2.7.c) p = max{IR(C) : C lies on F.}. 
The quantity IR(C)I appearing in (2.7.c) can be bounded as follows. By (2.4) 

we have 

min{d(4C, V): C lies on F,} = inf{d(4C, V): C 0 int(V')} 
> inf d (C, V): C 0 int(W) I 
= min{d(4, V): C E a(W)}. 

From this inequality, (2.1.b), and an application of Lemma 3.3 with V, 4C, 
and e as under consideration, we obtain 

d(4, V) >?ea1 > O for all C lying on F7, 

where 

(2.8.a) al = min{j - CoI: E &V}. 

Since IIFII = 1 and the matrix A satisfies the resolvent condition (1.2), we 
have in view of (2.5.b) the inequality 

(2.8.b) JR(?)l < Ml (eaY) 1a 1 for C lying on F7, O <e <, 

where 

(2.8.c) u2 = min{jo'(4)I:4 lies on F. for some A E [0, f]}. 

We choose e = (n + 1) 7?B and conclude from (2.7) and (2.8) that (2.2) holds 
with y depending only on fo and V. 

4. In the remaining case, when int(V) = 0, we take a > 0 such that 

VO= Vu{4e:C and <C- ajI <aforsome j with 1 < j? a} 

is contained in S. For e > 0, the set 

IC: C E C and d(4, VO) = e} 
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is the range of a piecewise smooth, positively oriented Jordan curve F, , parame- 
trized by; = z(t), 0 < t < 1, with Iz'(t)l independent of t. We may then 
proceed as in the case when int(V) :$ 0 to arrive at (2.2) with y depending 
only on q9 and V. o 

3. THREE LEMMAS 

The upper bound (3.2) of the subsequent lemma was used in the proof of 
Theorem 2.2. It can be viewed as a generalization of a bound derived by 
LeVeque and Trefethen [5] on the arc length of the image of a circle in the 
complex plane under a rational function. 

Lemma 3.1. Let z: [0, 11] - C be a continuous mapping, one-to-one on (0, 1), 
and let 

O = TO < T1 < T2 < *<m =1 

Assume 

(3.1.a) z is twice continuously differentiable at all t E (0, 1) with t $ 

Tj (j = 1, 2, ..., m- 1), 

(3.l.b) Iz'(t)I = u for all t E (0, 1) with t 7 
Tj (j = 1, 2 ..., m - 1), 

(3.1.c) f 
" 

Iz(t)I dt< 92. 

Here, 91, #2 are constants with #1 > 0 . 
Let C = z[O, 1] satisfy Assumption 2.1, and let v be as required in this 

assumption. Denote by F the oriented curve in C with parametrization 4 = 

z(t), < t< 1. 
Let P(4), Q(C) be polynomials of degree not exceeding N, with N > 1 and 

Q(C)$ 0for all C on F. Put 

R(4) = P(C)IQ(C). 

Then 

(3.2.a) j IR'(C)l Id1l < (2 ,uT1 + 4(m - v) + 16vN) * p, 

where 

(3.2.b) p = max{IR(C)I: C lies on T}. 
Proof. 1. We start from the inequality 

(3.3) j IR'(C)I I d 'l < #I * _ (I Re{R'(z(t))}I + I Im{R'(z(t))} 1) d t. 
r ~~~~~j=1 IJ- 

In view of the absolute values occurring in the right-hand member of (3.3) it is 
useful to study first the number of sign changes of the functions Re{R'(z(t))} 
and Im{R'(z(t))}. 
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In the following we shall be using freely the notation 

= 4+ iq withC4E C, 4 eRD, qeRD. 

We thus can write 
IQ(4) 4Re{R'(4)} = G(c, a), 

where 
G(c, a) = Re{[P (4T)Q(4) - P(4)Q (4C)][Q(4)] } 

is a polynomial, with real coefficients, in the variables 4, a. Note that the 
degree of this polynomial does not exceed (4N - 1) . It is clear that the sign of 
Re{R'(4)} for C = z(t), 0 < t < 1, coincides with the sign of G(c, a). 

We define any a E (0, 1) to be an essential zero if 

G(4, a) = 0 for c + iq = z(a) 

and for all e > 0 there exists a t, E [0, 1] with It. - al < e such that 

G(c, a) 7: 0 for c + iq = z(t,). 

We shall show, in part 2 of the proof, that 

(3.4) the number of essential zeros does not exceed (4N - 1)v. 

2. For arbitrary polynomials P(c , a) we introduce the notation 

C[P] = {4 : = ? + iq with 4, q E JR and P(c , a) = 0}. 

Let K(c, l) be as in Assumption 2.1 with C = z[O, 1]. Then there exist 
polynomials L(c, l), Ko (, 5 l) such that 

(3.5.a) K(4,5 ql) _L(4, 5)KO(4 l), 

(3.5.b) Ko(4, a) and G(c , l) have no common factor of degree > 1 
(in the domain of polynomials in two variables over C), 

(3.5.c) C[L] c C[G] 

(cf., e.g., [11]). 
Let a be an essential zero. In view of (3.5.a,c) the corresponding t, are 

such that z(t,) E C[K0]. By letting e -- 0 we see that 

z(a) E C[KO] n C[G]. 

By virtue of (3.5.b), it follows from Bezout's theorem (cf., e.g., [11, Chapter 
III]) that the number of points z(a) lying in the above intersection does not 
exceed (4N - 1)v. Since z is a one-to-one mapping on (O, 1), we arrive at 
(3.4). 

3. Let j be given with 1 < j < m. Denote bya <a.2 < <al the 
essential zeros within (z1j-1 l z), and put co = zj -l a (a = 

Let k be given with 1 < k < a. One easily sees that either 

Re{R'(z(t))} > 0 for all t E (ak-1 a Uk) , 
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or 
Re{R'(z(t))} < 0 for all t E (Uk-1 ' (k) 

Consequently, 

| Re{R'(z(t))}j dt = i| Re{R (z(t))} dt 
rJ 1 k=- - l 

Introducing 

x(t).= Re{z(t)}, y(t) = Im{z(t)}, 

f(t) = Re{R(z(t))}, g(t) = Im{R(z(t))}, 

we can write the kth term in the above sum as 

l lk f x(t) + ig,(t)} t Re 
_____ _W __ dt. 

Since lz'(t)l -,u , we see that this term is also equal to 

(Al)2 f {(x f + 'g) (x f + Y"g)} 

By (3.2.b), the last expression can be bounded by 

281 {2y + 
k 

I z (t) I dt p. 

It thus follows that 

(3.6) ___ Re{R'(z(t))}j dt < (Al)2{2ya(j) + f l z"(t)l dt}p, 

where we have written a = a(j) to indicate the dependence of a on j. 
4. From (3.4) it follows that 

m 

Z[a(j)- 1] < (4N- 1)v. 
j=l 

Combining this relation with (3.6), we conclude 
m 

TJ2 

E f Re{ {(z(t))2j dt <2(Y) 12y [(4N - 1)v + m] + j2}P. 
j=1 Ty_ 

It can be seen, by a similar reasoning as above, that the last inequality remains 
valid if Re{R'(z(t))} is replaced by Im{R'(z(t))}. A combination of these 
inequalities with (3.3) yields (3.2). 5 

The subsequent Lemma 3.2 was used in part 2 of the proof of Theorem 2.2. 
Since the lemma can be proved by a straightforward application of ideas taken 
from [2], we confine ourselves to giving only a sketch of its proof. 
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Lemma 3.2. Assume 

(3.7.a) C c C is a compact set, 

(3.7.b) C satisfies Assumption 2.1, 

(3.7.c) there exists Co V C such that each half-line 

IC: C = C0 + t exp(ia) for some t > 0}, 

where 0 < a < 2,r, intersects C at precisely one point. 

Then C is the range of a positively oriented Jordan curve F, parametrized by 
= z(t), 0 < t < 1 . Further, z can be chosen such that (3.1) holds with some 

m > 1, 81 > 0, j12?> 0, and rj satisfying 0= r0 < z1 < z2 < .. < . = 1. 

Sketch of the proof. 1. Let C and Co be as in (3.7). By (3.7.a,c), C is the 
image of a positively oriented Jordan curve F. 

2. Let 40 E C . Using the result of part 1, (3.7.b), and the theory in [2, ?11.4], 
we can conclude that, in a neighborhood of 40, the set C is equal to the range 
of a curve z(t) = x(t) + iy(t), -e < t < a, where e > 0 and x and y are 
functions that are real analytic on [-e, 0] and [0, e]. 

3. By a transformation of the independent variable t it can be proved that 
for all 40 E C there exist a 3 > 0 and a function z( 0, t) such that 

(3.8.a) in a neighborhood of 40, the set C is equal to the range of the 
simple curve z( 0, t), t E [-d, 3], 

(3.8.b) & z(4o t) = 1 for all t with ItI E (0, ], 

a5 2 

(3.8.c) f | Z(?o0 t) dt is finite (but possibly improper). 

4. On the basis of the results of parts 1 and 3, it is possible to construct a 
curve F as in the statement of the lemma. 5 

The following lemma was used in part 3 of the proof of Theorem 2.2. It can 
be proved by using basic properties of convex sets (cf., e.g., [7]). 

Lemma 3.3. Let V be a closed, convex subset of C, and let Co E int(V). Define 

a = min - Col:; E aV}, 

and, for e > 0, 

we= (1 + )( - CO) +CO. 

Then d (S. V) > ea for all C E a (WE) . 

Added in proof. Relation (1.3) has recently been improved to the optimal value 

MO = esM1, see M. N. Spijker, On a conjecture by LeVeque and Trefethen 
related to the Kreiss matrix theorem, BIT (to appear). 
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